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]- Abstract

In 1978, Merkle and Hellman introduced a knapsack-based public-key

cryptosystem, which received widespread attention. The two major open

problems concerning this cryptosystem are:

(i) Security: How difficult are the Merkle-Hellman knapsacks?

(ii) Efficiency: Can the huge key size be reduced?

In this paper we analyze the cryptographic security of knapsack problems

with small keys, develop a new (non-enumerative) type of algorithm for

solving them, and use the algorithm to show that under certain assumptions

it is as difficult to find the hidden trapdoors in Merkle-Hellman knapsacks

as it is to solve general knapsack problems.
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1. Motivation

To introduce our notation, we briefly describe the Merkie-Hellman

cryptosystem (more details can be found in Merkle and Hellman [1978]).

* The published key is a list of n generators ai, each one of which is a

randomly looking q bit nunber (the recommended parameters are n > 100,

q 2 200). To encrypt an n-bit message X = xlx 2...xn, the sender uses

n
the receiver's key to compute the cyphertext b = z xia i , and transmitsi=l

it over the insecure communication channel. To decrypt this cyphertext,

the receiver uses a secret structure (trapdoor) embedded in the generators

in order to solve this knapsack problem by a shortcut polynomial method.

An eavesdropper, who knows b and the a,'s but not the secret trapdoor,

is forced to use some general purpose knapsack solving algorithm, and

even the best such algorithm (Schroeppel and Shamir [19791) is currently

too slow for problems of this size.

The main practical drawback of the Merkle-Hellman scheme is its

huge key size (tens of thousands of bits, compared with hundreds of bits

in the Rivest-Shamir-Adleman [1978] scheme and tens of bits in the DES

[1976] scheme). The public key directory of large communication networks

(telephone users, banks or military installations) can be extremely long,

and the many minutes required to exchange such keys over slow telephone

lines can severely restrict the usefulness of this public key cryptosystem.
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To reduce the size of the key in a knapsack based cryptosystem, we

can shorten the generators or decrease their number. The first approach

is impossible, since:

(i) When q < n, the decryption function becomes ambiguous since there
cannot be enough distinct sums to encode all the 2n possible

messages.

(ii) When q N n, the encryption function is almost a permutation, and

knapsacks with this property seem to be cryptographically

insecure (see Shamir [1979]).

(iii) When q is sufficiently small, the cryptanalyst can prepare a

complete cleartext-cyphertext table by preprocessing the

published key.

The second approach (which is mentioned in Merkle and Hellman's

original paper) is possible, provided we use multi-bit substrings of the

message as coefficients. All the knapsack solving algorithms developed

to date are based on the enumeration of potential xi solutions, and thus

their complexity does not change when we replace an equation with one

hundred 0-1 coefficients by an equation with four 25-bit coefficients

(which are the four quarters of the 100-bit message). The key size, on

the other hand, is reduced by a factor of 25, which makes this approach

extremely attractive from the cryptographic point of view.

In this paper, we investigate the complexity of compact knapsack

problems with a small number of generators and multi-bit coefficients.



!4

In particular, we develop a new kind of knapsack solving algorithm which

is not based on the enumeration of potential solutions, and use it to

show that compact knapsacks are considerably less secure than their 0-1

counterparts.

2. Preliminaries

Definition: The set of n-generator knapsack problems is the set of

equations of the form

n
E xla1 = b

in which the generators ai and the target value b are given natural

numbers, and the coefficients xi (which must be integral and non-negative)

are the unknowns. The set of compact knapsack problems is the union of

these sets for all n.

Remarks: (I) There is a trivial upper bound of Lb/ai j on the value

of each xI, and thus the set of compact knapsack problems is in NP. An

easy reduction from set covering shows that it Is NP-complete.

(ii) In cryptographic applications, it is necessary to publish a limit

x as part of the encryption key, and to encrypt only messages in which
0 < xi < I (without such a bound, the decryption process cannot be

unambiguous). This upper bound Is assumed to be known to the
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cryptanalyst, and can reduce the size of his search space from

Lb/al1 • Lb/a2 1 ... Lb/anJ to

Theorem 1: The sets of 1-, 2- and 3-generator knapsack problems are

polynomially solvable.

Proof: (1) The 1-generator knapsack problem xla 1 = b is solvable iff

ai divides b.

(2) The most general integral solution of the equation

xla I + x2 a2 =b

is
x2  Cl b + t(a2/gcd(a1,a2))

x2 = c2b - t(al/gcd(al,a 2 ))

where t is an arbitrary integral solution and cl, c2 are the coefficients

derived by Euclid's algorithm from the equation

cl(al/gcd(a1 ,a2 )) + c2(a2/gcd(al,a 2)) = 1

The two inequalities x1 2 0, x2 > 0 define two rays of t values, and the

2-generator knapsack problem is solvable iff the intersection of the rays

contains an integral point.

(3) This is a recent result whose proof is beyond the scope of this paper.

The interested reader is referred to Kannan and Shamir [19801. Q.E.D.
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The complexity of n-generator knapsack problems for any fixed n > 4

is still open: to the best of my knowledge, no such set was ever shown

to be either NP-complete or polynomially solvable. The best published

algorithm for them takes 0(/p) time both in the worst case and in the

average case measures, where p is the number of points in the search

space.

3. The New Approach

Definition: Given a compact knapsack problem K with a bound x on the

values of the coefficients, max(K) is defined as the largest target value

which can be represented by the generators, i.e.,

n
max(K) - z. (t-l)a i .

i=l

Definition: Two compact knapsack problems

n
K: E xia i - b 0 < xi < Z

i=l

n
K': E xta mb' 0 < x < iti-

are similar if there are two relatively prime numbers w (the multiplier)

and m (the modulus) such that m > max(K), m > max(K'), b' = wb(mod m) and

for all i, a - wat (mod m).
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Lemma 2: Similarity is a reflexive and symmetric relation, and it is tran-

sitive whenever all the moduli used are the same.

Proof: Immediate from the fact that the multipliers which are relatively

prime to m form a multiplicative group. Q.E.D.

Example: The three compact knapsack problems

Kl: x1.19 + x2 "31 + x3 .46 = 50 0 < xi - 2

K2 : xi-3 2 + x2 -15 + x3 '19 = 47 0 < xi < 2

K 3: x1.21 + x2 .13 + x3 .3 = 34 0 < xi < 2

are similar, since K2 is obtained from K, by multiplying its generators

and target value by 7 (mod 101), K3 is obtained from Kl by multiplying

its generators and target value by 33 (mod 101), and

101 = m > max(Kl) = 19 + 31 + 46 = 96

101 = m > max(K2 ) = 32 + 15 + 19 = 66

101 = m > max(K 3) = 21 + 13 + 3 = 37
0

Given two compact knapsack problems, we do not know how to check

their similarity or how to compute the w and m parameters that prove

their similarity in polynomial time. However, for our purposes this will

not be a problem since we will always know these parameters from previous

computations.
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f The most important property of the similarity relation is:

Theorem 3: If K and K' are similar, they have the same integral and bounded

solutions.

Proof: Let x1l,... xn be integers satisfying the equation

n

i=l xa b

Multiplying this equation times w and reducing it mod m, we get

n
Z xl(wai) = wb (mod m)
i=l

Since the xi's are integers, we can replace wb and each wai by b' and

a' which are their reduction mod m:1

n
E x a' = b' (mod m)

1=1
n

If each xi satisfies 0 < x < Z-1 and m > E (i-l)a!, both sides of the
i=l I

equation are integers in the range [O,m), and thus the equation must hold

without the (mod m) clause:

n
E xja• = b
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This proves that any integral and bounded solution of the original

problem is a solution of the transformed problem, and by symmetry the two

compact knapsacks have identical solutions. Note, however, that over

the real numbers or over unbounded integers the two equations can have

very different sets of solutions. Q.E.D.

The basic idea behind the new algorithm is quite simple: Given an

n-generator knapsack problem Kl, we search for n-l additional n-generator

problems K2 ,...,Kn which are all similar to K1. These n problems form

a system of n linear equations in n unknowns xi, which can be easily

solved over the rationals or the integers mod z. If the generated

system is non-singular and its unique solution is integral and properly

bounded, we are done. In fact, this approach is advantageous whenever

the rank (mod X) of the system is larger than n/2, since the solution

set of such a system contains less than kn/2 points and their enumeration

is faster than the use of the best preyiously published algorithm.

Example: The three equations in the previous example form a 
non-singular

system over the rational numbers, whose unique solution is x = l, x2 l,

x = 0. Instead of solving the equations over the rationals, we 
can

reduce them mod 2:

xx 2 =0 (mod 2)

x2Ox3 = 1 (mod 2)

xiex2ex3 = 0 (mod 2)

and solve this simplified system over GF(2). o
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The formal analysis of the expected rank of generated systems is

not easy. The set of modular multiples of a randomly chosen vector

(a1,...,an) form a lattice in the n-dimensional cube of side m, which is

usually uniform and isotropic. Extensive experimentation has shown that

when the original problem has only one solution (which is always the case

in cryptographic knapsacks), the probability of n randomly chosen points

in this lattice to span the n-dimensional space is very high. A partial

result that supports this claim is:

Theorem 4: Let (a1,...,an) be an integral point and let m be a modulus

which is greater than all the ai's. Then for a randomly chosen integral

w in [O,m), the probability of (a1,...,a n ) and (wal(mod m),...,wan(mod m))

to be linearly dependent over the reals is

gcd(al,...,a n)/max(aI,..'a n)

Proof (sketch): Without loss of generality, we can assume that a,
max(aI,...,a n). Let Pl,...,Pa, be the points on the continuous line segment

(ta1,...,tan) 0 < t < m

defined by

Pi: t = (-l)m/a I

For every point (ta1 ,...,ta n) between Pi and Pi+l, the point (tal(mod m),...,

ta n(mod m)) Is linearly dependent on (a, ...an ) over the reals if and only

if the point PI is congruent to (0,...,0) modulo m. It is easy to show

that exactly gcd(a1,...,a n ) of the P1 points have this property, and thus
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the probability of linear dependence for randomly chosen t is gcd(al,... ,

an)/a 1 . Since the points with integral values of t are equally distributed
among the various (Pi,Pi+l) segments, this probability applies to them as

well. Q.E.D.

Corollary: If gcd(al,...,an) I 1 and the ai's are sufficiently large, it

is extremely unlikely that a randomly chosen transformed equation will be

linearly dependent on the original equation.

We were unable to extend this proof technique to the case of n similar

equations, but our numerical experiments indicate that the relative frequency

of singular systems is similar to that expected from n x n matrices whose

entries are chosen at random from [O,m). When m is large, this relative

frequency is extremely small and does not have a practical significance

in cryptanalysis.

4. The Algorithm

The main problem in applying the method outlined in the previous section

is how to choose the m and w parameters that transform the original problem

K into a similar problem K'. When m is a fixed prime > max(K) and w varies

between 1 and m-l, each generator ai in K' (i.e., each w-ai (mod m)) be-

comes uniformly distributed (in a pseudo-random sense) between I and m-l.

To satisfy m > max(K'), all these random variables must be simultaneously

small. Assuming that their distributions are independent, the probability

of this event can be estimated as follows:
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Lemma 5: Given n independent and uniformly distributed random variablesn 
- )

ai e [Oom), the probability P that m > E (1-l) a! is O((tn/en).
=l

Proof: The probability of n independent and uniformly distributed random
n

variables ri c [0,1) to satisfy E ri < d <_ is equal to the volume cut
-l n

from the n-dimensional unit cube by the hyperplane E r I - d, which is dn/n!.

By scaling up the range of the ri's to [O,m) and using the bound d -m/(-l),

we get P = -/(-l)n.n!. By Stirling's formula, this probability is

O(({n/e'n). Q.E.D.

Corollary: The expected number of useful multipliers w is O(m-(Ln/e)-n),

and this value is larger than 1 whenever m has more than O(n log(tn/e))

bits.

Example: A knapsack problem with ten generators and twenty bit coefficients

is likely to have over 280 useful multipliers when the modulus is 300 bits

long. However, a simple trial-and-error is not likely to find them, since

they are scattered in [0,2300)) with a relative frequency of less than

2-220. In fact, for any n > 3 the O((An/e)-n) probability of success is

even lower than the O(A-n) probability of guessing the correct xi solution

of the original knapsack problem!I
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As far as we know, there are no efficient number-theoretic algorithms

for the simultaneous minimization (under modular multiplication)of three or

more natural numbers. The algorithm presented in this section is based on

combinatorial ideas, and it should be viewed as a first attempt at solving

this problem. Better algorithms (based on other approaches) undoubtedly

exist, and research in this direction is still at a preliminary stage.

Our algorithm is described in terms of a free parameter s, whose

exact value will be determined later. It attempts to minimize the various

generators in n successive stages. At each stage 1 < k < n, it computes

a set of s "independent" multipliers w1k, ..., wsk each one of which makes

the first k generators small under modular multiplication:

kV 1 < i < k V 1 < i s , wj ai (mod m) is small.

The final s multipliers w1n,...,wsn have the desired property with respect

to all the ai generators.

An informal description of the algorithm is:

k=O (initialization): Choose a sufficiently large prime modulus m and

s random numbers wo,...,wo in [Om).Il<k<n (iteration) : Form the set U of all the 2s sums of subsets of

k-l kthe s numbers wj . The new multipliers w are

defined as the s elements of U-(O} that makes ak

smallest under modular multiplication (regardless

of what they do to the other generators).

Appealing once more to the pseudo-random behaviour of modular multi-

plication, we can show:
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Theorem 6: For all 1 < i <_ n, 1 < i < s and 1 < k <_ n, the expected value

of wk a, (mod m) is

m/2 when k<i

mj/2S when kWi

(m/2s) (s/2)k- i+ 1  he(,,S)s,?k~+1when k>i

Proof: The value of the ith generator does not affect the choice of the

multipliers at stages k=l,...i-1, and thus wa (mod m) fluctuates randomly

in [O,m) and its expected value is m/2. At stage k=i, w a. (mod m) is
Wj 1

chosen as the jth smallest element in a pseudo-random set of 2s points in

[0,m), and thus its expected value is mj/2 s .

At stage kmi+l wI+I a, (mod m) is by definition the sum of some subset

of the s numbers wi a1 (mod m),...,w a1 (mod m), and thus its expected size

is approximately

S

1/2 E (mj/2s) ' (m/2S)(s/2)2
j =1

At any latter stage, the subset addition increases this value by a factor

of s/2, and thus at stage k > i the expected value is (m/2S)(s/2)k '+l Q.E.D.

The key to the efficiency of the algorithm is the sawtooth behaviour ofI kthe expected value of each wj a1 (mod m) as a function of the stage k: it

drops sharply at stage kW but increases only moderately at later stages

(when the other generators are handled).
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Example: Let m be a 300 bit modulus, let n be 4 and let s be 32. Then the

expected size (in bits) of wk ai (mod m) as a function of the stage k and

7 the generator i is:

i=l i=2 i=3 i=4

k=l 268 300 300 300

k=2 276 268 300 300

k=3 280 276 268 300

k=4 284 280 276 268 o

For any multiplier w computed at the last stage of the algorighm,

the expected value of the sum of the transformed generators,

n n
E w a, (mod m), is at most E (m/2s)(s/2)n

'f+l2 (m/2s)(s/2)n,
i=1 J i=l

To satisfy the condition m > max(K'), the parameter s must satisfy

m > (t-l)(m/2S)(s/2)
n

By taking the logarithm of both sides and rearranging the terms, we get the

basic inequality

s > n log s + log(t-l) - n

For any given n and i, we can use numeric methods to solve this Implicit

inequality to find the smallest s that satisfies it. To estimate the

asymptotic growth rate of s, we can consider the single-parameter set of

problems in which n is both the number of generators and the length of each

coefficient. Since log(i-l) - n, the inequality simplifies to s > n log s.

The value s = n log n does not satisfy the inequality, but any c-improve-

ment in it of the form s = (I+) n log n satisfies it for all sufficiently
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large values of n:

n log n + e n log n = s > n log s = n log n + n loglog n + n log (l+c).

Consequently, the asymptotic behaviour of s in this case if O(n log n).

A straightforward implementation of the iteration stages requires 0(2s)

operations per stage. A better implementation can be obtained by using the

Schroeppel-Shamir [1979] algorithm in order to find the smallest sums of

subsets (mod m) in 0(2s/2) time and 0(2s/4) space. Further optimizations

2 2can eliminate the first two stages (w 1,...,w s can be directly computed in

polynomial time by the "best approximations" algorithm of number theory),

and reduce the complexity of the remaining stages by using a decreasing

sequence of s values (the final sizes of most of the transformed generators

are unnecessarily low - it suffices to make all these sizes roughly equal).

A problem with n generators and n bits per coefficient contains a

total of n2 unknown bits, and thus the best previously published algorithm

for solving it requires

0(2n2/2)

operations. By using the o(2s/2) implementation of the new algorithm with

s = n log n we can solve the problem in 0(2(n log n)/2) operations, which

is a very substantial saving even for moderate values of n.

In practical applications, s must be limited to 80 or less in order

to make the 0(2s/2) time complexity feasible. When i is small and s=80,

the inequality

s > n log s + log (t-1) - n
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j yields n < 15 as the practical upper limit on the number of generators our

algorithm can handle. When n is slightly decreased, k can be considerably

increased since it occurs only within a log. For example, when n=10 s=60

and the improved algorithm is used, t can be as large as one million. The

total number of unknown Xk bits in such a 10-generator knapsack problem is

200, and even with the best previous algorithm and an ultimate 1 picosecond

machine, its solution takes longer than the age of the universe. The new

algorithm, on the other hand, can solve it in less than 20 minutes on a

conventional 1 microsecond machine.

5. Consequences of the Algorithm

The analysis of the expected behaviour of our algorithm in the

previous section was based on certain plausible but unproved assumptions

about the behaviour of the generators under modular multiplication. So

far we were unable to make this analysis rigorous, and thus all the con-

sequences of the algorithm mentioned in this section are somewhat speculative.

For any fixed m > 3, the asymptotic complexity of our algorithm

(when the sizes of a1 and xi grow to infinity) is non-polynomial, and thus

it does not solve the basic theoretical question of whether n-generator

knapsack problems are in P, NP-complete, or somewhere in between. However,

the efficiency of the new algorithm for small values of n makes them an

unacceptable security risk in cryptographic applications, and thus a large

key size seems to be an inherent feautre of knapsack-based cryptosystems.

I



18

One of the main cryptanalytic advantages of the new algorithm is that

once the appropriate multipliers and moduli are found (by preprocessing

the published generators), the decryption of actual cyphertexts b becomes

extremely fast -- all the cryptanalyst has to do is to compute a vector

of n modular multiples of b and to solve the resultant system of linear

equations. This behaviour can justify weeks or even months of pre-

processing time, and compares favorably with other knapsack-solving algo .

rithms in which every decryption attempt is independently time consuming.

The algorithm strongly indicates that (unintentional) trapdoors are

built into most uniquely decodable knapsack systems, since the knowledge

of the n modular multipliers makes them solvable in polynomial time. From

the complexity-theoretic point of view, these multipliers form short and

easily checkable proofs both for the existence and for the non-existence

of solutions - a phenomenon that characterizes problems in A = NP n co-NP.

Furthermore, the uniformity of these proofs for all the knapsack problems

represented by the same generators indicates that the circuit complexity of

these collections of problems is polynomial.

Another major cryptographic conclusion is related to the security of

the Merkle-Hellman cryptosystem. To decode a cyphertext in this system,

the cryptanalyst can either solve the knapsack problem or expose the secret

I trapdoor embedded in the public key. The NP-completeness of knapsack

problems is some indication that the first type of attack is not likely to

succeed, but the difficulty of the second type of attack is an open problem
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about which almost nothing is currently known. The trapdoor suggested by

Merkle and Hellman is based on the repeated transformation of one set of

generators into a similar set of generators via modular multiplications

(whose m and w parameters are kept secret). When the number of scrambling

stages is large, the resultant generators become randomly-looking numbers

with no observable structure in them. The main (and probably the only)

cryptanalytic attack that can expose the initial set of generators is to

undo the similarity transformations one at a time in reverse order. However,

any general purpose algorithm for finding the appropriate m and w parameters

was shown in this paper to lead to an efficient knapsack-solving algorithm,

and thus the detection of the secret trapdoor is not likely to be any

easier than the direct solution of the original knapsack problem.
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